Как определить средний стаж работы используя данные

Выше уже было рассказано о формуле средней квадратической, которая применяется для оценки вариации путем расчета среднего квадратического отклонения, обозначаемое малой греческой буквой сигма:

Еще проще можно найти среднее квадратическое отклонение, если предварительно рассчитана дисперсия, как корень квадратный из нее:

В примере про студента, в котором выше рассчитали дисперсию, найдем среднее квадратическое отклонение как корень квадратный из нее: .

Квадратический коэффициент вариации

Квадратический коэффициент вариации — это самый популярный относительный показатель вариации:

Критериальным значением квадратического коэффициента вариации V служит 0,333 или 33,3%, то есть если V меньше или равен 0,333 — вариация считает слабой, а если больше 0,333 — сильной.


Дело в том, что веса при исчислении средней арифметической выполняют роль удельного веса (соотношений между группами по количеству единиц). Поэтому замена частот частостями не меняет значения средней .

5. Сумма отклонений отдельных вариантов от средней арифметической всегда равняется нулю.

Перечисленные свойства могут быть использованы для того, чтобы облегчить технику исчисления средней арифметической.

Например. Можно из всех значений признака вычесть произвольную постоянную величину (лучше значение серединной варианты или варианты с наибольшей частотой), полученные разности сократить на общий множитель (лучше на величину интервала), а частоты выразить частостями (в процентах) и исчисленную среднюю умножить на общий множитель и прибавить произвольную постоянную величину.

Как определить средний стаж работы используя данные таблицы

В статистической совокупности бывает 2 и более моды, тогда она считается бимодальной (если моды две) или мультимодальной (если мод более двух), и это свидетельствует о неоднородности совокупности.

Например, на предприятии работает 16 человек: 4 из них — со стажем 1 год, 3 человека — со стажем 2 года, 5 — со стажем 3 года и 4 человека — со стажем 4 года. Таким образом, модальный стаж Мо=3 года, поскольку частота этого значения максимальна (f=5).

Если X задан равными интервалами, то сначала определяется модальный интервал как интервал с наибольшей частотой f.

Содержание

I.Статистические показатели: средние величины

1.1.Понятие о средних величинах

1.2.Виды средних и способы их вычисления

II. Основные категории статистики

1. Понятие о средних величинах

Признаки единиц статистических совокупностей различны по своему значению, например, заработная плата рабочих одной профессии какого-либо предприятия не одинакова за один и тот же период времени, различны цены на рынке на одинаковую продукцию, урожайность сельскохозяйственных культур в хозяйствах района и т.д.

Решение. Для определения средних темпов роста применяется средняя геометрическая. Когда имеются данные о первом периоде (в нашем случае — выпуск продукции в 1990 г. на сумму 21,15 у.д.е.) и в последнем периоде (в задаче — выпуск продукции по плану в 1995 г. на сумму 35 у.д.е.), среднегодовой темп роста определяется по формуле:

Задача 6. Определить моду и медиану по следующим данным (табл. 4.6):

Таблица 4.6

Распределение студентов заочного отделения по возрасту

Возрастные группы Число студентов Накопленные частоты до 20 лет 20-25 25-30 30-35 35-40 40-45 45 лет и выше Итого:

Решение. Для определения моды определяем модальный интервал.

Если значения X заданы в виде интервалов, то для расчетов используют середины интервалов X, которые определяются как полусумма верхней и нижней границ интервала. А если у интервала X отсутствует нижняя или верхняя граница (открытый интервал), то для ее нахождения применяют размах (разность между верхней и нижней границей) соседнего интервала X.

Например, на предприятии 10 работников со стажем работы до 3 лет, 20 — со стажем от 3 до 5 лет, 5 работников — со стажем более 5 лет. Тогда рассчитаем средний стаж работников по формуле средней арифметической взвешенной, приняв в качестве X середины интервалов стажа (2, 4 и 6 лет): (2*10+4*20+6*5)/(10+20+5) = 3,71 года.

Средняя арифметическая применяется чаще всего, но бывают случаи, когда необходимо применение других видов средних величин.

Распределение стажа соответствует представленному на рисунке и составляет: четыре человека со стажем в один год, 11 человек со стажем два года, 19 человек со стажем три года, 40 человек со стажем четыре года, 20 человек со стажем пять лет, четыре человека со стажем шесть лет, один человек со стажем но семь лет и один человек со стажем десять лет.

Средний непрерывный стаж = ((4 × 1)+ (11 × 2)+ (19 × 3)+ (40 × 4)+ (20 × 5)+ (4 × 6)+ (1 × 8)+ (1 × 10)) / 100 = 3,85 года

Продолжительный средний стаж может также свидетельствовать о самоуспокоенности и расслабленности сотрудников, об отсутствии свежих идей в компании. Вот почему данный показатель необходимо анализировать совместно с показателем текучести кадров для более детального понимания ситуации.

Некоторые работники возвращаются в прежние компании после работы в других организациях.

Однако произведения значений признака на частоты дает количество проработанного времени — 8 час. Так как произведения признака на частоту равны, то средняя определяется по формуле средней гармонической простой:

мин.

Задача 4. Автомобиль проехал 1000 км, из них 480 км он прошел со скоростью 60 км/час, 320 — со скоростью 80 км/час и 200 км — со скоростью 50 км/час. Определите среднюю скорость, с которой совершался рейс.

Решение.
В этой задаче опять известны только значения признака, а значения частот (время) не даны, однако имеются данные о пройденном расстоянии, которое является произведением признака на частоту. В этом случае средняя рассчитывается по формуле средней гармонической взвешенной:

км/ч.

Задача 5. Определите среднегодовой темп роста выпуска продукции на заводе, если в 1990 г.

где – среднее значение исследуемого признака;

m – показатель степени средней;

– текущее значение (варианта) осредняемого признака;

n – число признаков.

В зависимости от значения показателя степени m различают следующие виды степенных средних:

при m = -1 – средняя гармоническая ;

при m = 0 – средняя геометрическая ;

при m = 1 – средняя арифметическая ;

при m = 2 – средняя квадратическая ;

при m = 3 – средняя кубическая .

Средняя арифметическая

Средняя арифметическая применяется, когда объем совокупности представляет собой сумму всех индивидуальных значений варьирующего признака.

Если совокупность состоит их отдельных частей, следует разбить ее на типические группы (средняя температура по больнице).

Средние величины, используемые в качестве характеристик для неоднородных совокупностей, называются системными средними. Например, средняя величина валового внутреннего продукта (ВВП) на душу населения, средняя величина потребления различных групп товаров на человека и другие подобные величины, представляющие обобщающие характеристики государства как единой экономической системы.

Средняя должна вычисляться для совокупностей, состоящих из достаточно большого числа единиц. Соблюдение этого условия необходимо для того, чтобы вошел в силу закон больших чисел, в результате действия которого случайные отклонения индивидуальных величин от общей тенденции взаимно погашаются.

2.

где fi – частота ряда распределения, с которой отдельные варианты встречаются в совокупности (или удельный вес отдельных значений во всей совокупности).

Например : Рабочие бригады по возрасту распределились следующим образом:

Возраст рабочих, лет ( X)

Численность рабочих, чел. ( fi )

Средний возраст рабочего бригады составляет

Если исходная информация представлена в виде интервального ряда распределения, то средняя арифметическая взвешенная определяется по формуле:

где Xc — центральное (серединное) значение признака в интервале.

Например: По имеющимся данным определить средний стаж рабочего бригады:

Стаж работы, лет

Для расчёта средней арифметической взвешенной интервального ряда распределения определим центральное (серединное) значение признака в каждом интервале.

Эти данные уже упорядочены по возрастанию, а их количество N=10 — четное, поэтому медиана будет находиться между X с номерами 0,5*10=5 и (0,5*10+1)=6, которым соответствуют значения X5=21 и X6=23, тогда медиана: Ме = (21+23)/2 = 22 (года).

Если X задан в виде равных интервалов, то сначала определяется медианный интервал (интервал, в котором заканчивается одна половина частот f и начинается другая половина), в котором находят условное значение медианы по формуле:

где Ме – медиана; ХНМе – нижняя граница медианного интервала; hМе – размах медианного интервала (разность между его верхней и нижней границей); fМе – частота медианного интервала; fМе-1 – сумма частот интервалов, предшествующих медианному.

Возможно Вас так же заинтересует:
Обязанность муниципалитета по содержанию жилья Модно ли перенести кухню в другую комнату Принцип всеобщности социального обеспечения означает что Проверенные частные кредиторы только личная встреча Два участка в товариществе как платить Трудовой догоров для 05 ставки Какой инструктаж проводят после декретного отпуска Отказ в удовлетворении данного искового требования не влечет последствий Заявления о расторжении договора страхования сбербанк образец Какие книги считаются ценными
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *